A class of nonergodic interacting particle systems with unique invariant measure

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A classification of orbits admitting a unique invariant measure

We consider the space of countable structures with fixed underlying set in a given countable language. We show that the number of ergodic probability measures on this space that are S∞-invariant and concentrated on a single isomorphism class must be zero, or one, or continuum. Further, such an isomorphism class admits a unique S∞-invariant probability measure precisely when the structure is hig...

متن کامل

A Class of Interacting Particle Systems on the Infinite Cylinder with Flocking Phenomena

We present a class of extended Kuramoto models describing a flocking motion of particles on the infinite cylinder and provide sufficient conditions for the asymptotic formation of locked solutions where the distance between particles remains constant. Our proposed model includes the complex Kuramoto model for synchronization. We also provide several numerical simulation results and compare them...

متن کامل

Interacting Particle Systems

3 4 CONTENTS Preface Interacting particle systems, in the sense we will be using the word in these lecture notes, are countable systems of locally interacting Markov processes. Each interacting particle system is define on a lattice: a countable set with (usually) some concept of distance defined on it; the canonical choice is the d-dimensional integer lattice Z d. On each point in this lattice...

متن کامل

Interacting particle systems

2 The asymmetric simple exclusion process 18 2.1 Stationary measures and conserved quantities . . . . . . . . . . . . . . . . . . . 18 2.2 Currents and conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Hydrodynamics and the dynamic phase transition . . . . . . . . . . . . . . . . . 26 2.4 Open boundaries and matrix product ansatz . . . . . . . . . . . . . . . . . . ...

متن کامل

Measure-valued Limits of Interacting Particle Systems with K-nary Interactions I. One-dimensional Limits

Results on existence, uniqueness, non-explosion and stochastic monotonicity are obtained for one-dimensional Markov processes having non-local pseudo-differential generators with symbols of polynomial growth. It is proven that the processes of this kind can be obtained as the limits of random evolutions of systems of identical indistinguishable particles with k-nary interaction.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Applied Probability

سال: 2014

ISSN: 1050-5164

DOI: 10.1214/13-aap987